If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=20x=0
We move all terms to the left:
2x^2-(20x)=0
a = 2; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·2·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*2}=\frac{40}{4} =10 $
| 4x+40=7(-2x+14) | | 5(1-x)=-2(x+2) | | 5/6z+5=-1/6z | | 5/6=7/a | | -5÷8c=20 | | 1/x-1+2=7/x-1 | | 8/7=x/3 | | (6x-24)=(4+10x) | | 4/x=6/2 | | 4/b=6/2 | | 6/x=2/4 | | x+5/10=6/5+x-5/4 | | y=-(6/7)+1/3 | | 2x^4+19x^3+40x^2−25x=0 | | -(1/3)+y=-(6/7) | | -2(x+3)=-1 | | 14t+-9t+20t-18t=-7 | | 9c-9c+6c=18 | | 20h+h+-4h+-11h=6 | | S+4s-4s+2s-2s=20 | | 18p-10p-4p=20 | | 8t-6t-2t+3t=18 | | 14p-9p=10 | | 14p-9p=1 | | 3+4*10^2x=63 | | 8=11x+6 | | -11+x=(8+2x)-3 | | (2x-1)+3=7+x | | 4(28)-y+2(28)+3y+7=180 | | k+20=-30 | | (800-1.5x)(0.5718)=0 | | -j=8−9j |